## BEAM ENGINEERING FOR ADVANCED MEASUREMENTS CO.

## MATERI ALS

Azobenzene liquid crystals
Azobenzene monomers


Chiral azobenzene dyes
Photoalignment materials
Fast azobenzene liquid crystals with enhanced visible photosensitivity
Synthetic intermediates

## LASER BEAM AND OPTI CS CHARACTERIZATI ON SYSTEMS

Crystal-Scan optical multimeter
Microscanning beam profiler


Express-collimator
Las-Air high power beam sampler

## PHOTONICS COMPONENTS AND SYSTEMS

Achromatic polarization rotators
Eclipsor sensor protector


Polymer films for optical information recording, UV visualization and dosimetry
Broadband IR visualization windows


## Materials

## AZOBENZENE LIQUID CRYSTALS




BEAM Co.'s azobenzene liquid crystals are photosensitive materials for photonics, nonlinear optical applications, optical information recording and processing using low power laser beams ( $10^{-7}-10^{-3} \mathrm{~W}$ ).

| I tem \# | Chemical name | Nematic range [ ${ }^{\circ} \mathrm{C}$ ] | Minimum order [ g] |
| :---: | :---: | :---: | :---: |
| Singlecomponent |  |  |  |
| D307 | 4-heptyl-4'propylazobenzene | 3-34 | 2 |
| D308 | 4-octyl-4'propylazobenzene | $15-25^{1)}$ | 2 |
| CAB6 | 4-cyano-4'hexyloxyazobenzene | 99-116 | 2 |
| CAB7 | 4-cyano-4'heptyloxyazobenzene | 91-110 | 2 |
| CAB8 | 4-cyano-4' octyloxyazobenzene | 102-111 | 2 |
| Multicomponent |  |  |  |
| 1005 | N/A | 12.5-48.5 | 2 |
| 1205 | N/A | 8-59 | 2 |
| 5721 | N/A | 8-70 | 2 |
| 13C5 | N/A | $\begin{gathered} \text { Tclear: }^{\text {custom²) }} \end{gathered}$ | 2 |
| 8621 | N/A | 22-723) | 2 |
| 8721 | N/A | 28-723) | 2 |
| 4915 | N/A | -7-57 | 2 |
| ${ }^{1)}$ Monotropic smectic A phase below -160 C . |  |  |  |
| ${ }^{2)}$ Clearing point adjustable between $29^{\circ} \mathrm{C}-46^{\circ} \mathrm{C}$. |  |  |  |
| ${ }^{3}$ Monotropic smectic A phases below nematic range. |  |  |  |

## Materials

## SELECTED ROOM TEMPERATURE AZOBENZENE LC MATERIAL DATASHEET

| LC | $\begin{gathered} \mathbf{T} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$ | $\underset{\left[\mathrm{cm}^{2} / \mathrm{W}\right](\mathrm{a})}{\mathbf{n}_{2}}$ | $\underset{\left[J / \mathbf{c m}^{2]}(b)\right.}{\mathbf{E}_{\text {inc }}}$ | $\underset{\left[J / \mathbf{c m}^{2}\right](c)}{\mathbf{E}_{\text {iso }}}$ | $\underset{\text { (d) }}{\Delta \mathbf{n}}$ | $\underset{\left[\mathrm{cm}^{2} / \mathrm{s}\right](\mathrm{e})}{\mathrm{D}}$ | $\varepsilon_{\perp}$ | $\varepsilon_{\\|}$ | $\begin{aligned} & \mathbf{U}_{\mathrm{Fr}} \\ & \mathbf{[ V ]} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1005 | 12.5 N 48.5 I | 2.0.10-1 | 0.073 | 0.39 | 0.18 | 5.3.10-6 | 3.0 | 3.4 | 8.2 |
| 1006 | 15 N 531 | $2.1 \cdot 10^{-1}$ | 0.074 | 0.39 | 0.18 | $5.2 \cdot 10^{-6}$ | 3.2 | 3.6 | 9.7 |
| 1007 | 17 N 52 I | 2.4.10-1 | 0.077 | 0.51 | 0.18 | $5 \cdot 10^{-6}$ | 3.2 | 3.7 | 9.9 |
| 1205 | 8 N 591 | $2.1 \cdot 10^{-1}$ | 0.13 | 0.73 | 0.21 | 6.3.10-6 | 3.2 | 4.0 | 9.5 |
| 1207 | 16.5 N 63.5 l | 1.9.10-1 | 0.14 | 0.82 | 0.20 | 6.2.10-6 | 3.2 | 3.9 | 9.8 |
| 5721 | 8 N 701 | $1.2 \cdot 10^{-1}$ | 0.19 | 1.35 | 0.23 | 3.6.10-6 | 2.6 | 3.3 | 15 |
| 8621 | SmA 22 N 721 | $1.1 \cdot 10^{-1}$ | 0.16 | 1.64 | 0.20 | $6.1 \cdot 10^{-6}$ | 3.0 | 3.3 | 19.6 |
| 8721 | SmA 28 N 721 | $1.1 \cdot 10^{-1}$ | 0.16 | 1.68 | 0.21 | 8.7.10-6 | 3.1 | 3.2 | 22.8 |
| 4911 | 2 N 561 | 1.9.10 ${ }^{-1}$ | 0.075 | 0.52 | 0.18 | 4.7.10-6 | 3.3 | 3.9 | 20.5 |
| 4915 | -7 N 571 | $2.1 \cdot 10^{-1}$ | 0.067 | 0.47 | 0.18 | $4.1 \cdot 10^{-6}$ | 3.1 | 3.7 | 17 |
| 4955 | 4 N 631 | $2.1 \cdot 10^{-1}$ | 0.13 | 0.93 | 0.20 | 4.4.10-6 | 3.0 | 3.7 | 19.8 |
| 4913 | 3 N 521 | $2.0 \cdot 10^{-1}$ | 0.076 | 0.60 | 0.20 | 4.2.10 ${ }^{-6}$ | 3.0 | 3.6 | 18 |
| 4953 | 4 N 571 | $2.0 \cdot 10^{-1}$ | 0.10 | 0.79 | 0.21 | $4 \cdot 10^{-6}$ | 3.0 | 3.5 | 16.3 |
| 3178 | 18 N 41.5 I | 1.8.10 ${ }^{-1}$ | 0.058 | 0.28 | 0.14 | $5.5 \cdot 10^{-6}$ | 2.4 | 3.2 | 8.5 |
| 3155 | 3 N 48 l | $2.2 \cdot 10^{-1}$ | 0.11 | 0.43 | 0.20 | $5.1 \cdot 10^{-6}$ | 2.6 | 3.3 | 7.5 |
| D307 | 3 N 341 | $3.2 \cdot 10^{-1}$ | 0.016 | 0.1 | 0.20 |  |  |  |  |

(a) $\lambda=532 \mathrm{~nm}, \mathrm{I}=4 \cdot 4 \cdot 10^{-7} \mathrm{~W} / \mathrm{cm}^{2}, \mathbf{E} \| \mathbf{n}$ (E: light polarization; $\mathbf{n}$ : LC orientation), $\mathrm{L}=10 \mu \mathrm{~m}$.
(b) $\lambda=409 \mathrm{~nm}, \mathrm{I}=6 \cdot 2 \cdot 10^{-3} \mathrm{~W} / \mathrm{cm}^{2}, \mathrm{~L}=10 \mu \mathrm{~m}, \mathbf{E} \| \mathbf{n}$ ( L is the thickness of LC layer).
(c) $\lambda=409 \mathrm{~nm}, \mathrm{I}=6.2 \cdot 10^{-3} \mathrm{~W} / \mathrm{cm}^{2}, \mathrm{~L}=10 \mu \mathrm{~m}, \mathbf{E} \| \mathbf{n}$.
(d) $\lambda=633 \mathrm{~nm}, \mathrm{~T}=23^{\circ} \mathrm{C}$
(e) $\lambda=633 \mathrm{~nm}, \mathrm{~T}=23^{\circ} \mathrm{C}$

Constant of nonlinear refraction $n_{2}$ : determines the change in the refractive index $n-n_{0}$ of the material under the influence of a light beam of power density I according to the formula $\mathrm{n}-\mathrm{n}_{0}=\mathrm{n}_{2} \mathrm{I}$.
Incubation energy $\mathrm{E}_{\text {inc: }}$ : determines the amount of light energy that the LC has to be exposed to in order to start photoinduced mesophase-isotropic phase transition.
Transition energy $E_{i s o}$ : determines the amount of light energy that LC has to be exposed to in order for the material to be transformed into isotropic phase.
Optical anisotropy $\Delta \mathrm{n}$ : is defined as the difference between the principal values of the refractive indices of LC.
Constant of "orientation diffusion D : allows to evaluate the free relaxation time t of LC director reorientation in cells of thickness $L$ with hard anchoring boundary conditions with the aid of the formula $\tau=L^{2} / D$. The constant of "orientation diffusion" D is related with the orientational viscosity $\gamma$ and the elastic constant $\mathrm{K}_{1}$ of the liquid crystal by the expression $\mathbf{D}=\pi^{2} \mathrm{~K}_{1} / \gamma$.
Constants of dielectric susceptibility: $\varepsilon_{\perp}$ and $\varepsilon_{\|}$are the principal values of the dielectric susceptibility of NLC at 1 kHz.
Freedericks transition threshold $U_{F}$ : the minimum voltage necessary to apply to the NLC cell in order to induce NLC reorientation.

Beam Engineering for Advanced Measurements Co.
809 S. Orlando Ave., Suite I, Winter Park, FL 32789, USA
Tel. 407-629-1282 Fax 407-629-0460 e-mail: sales@beamco.com

## Materials

## CHIRAL AZObENZENE DYES



Chiral azobenzene dyes are used for producing phototunable bandgap materials (cholesteric liquid crystals)


| Item \# | $\begin{gathered} \text { HTP } \\ {\left[\mathbf{m m}^{-1}\right]} \end{gathered}$ | Min. Order |
| :---: | :---: | :---: |
| ChAD-1-R | 10 (in 5CB) | 2 g |
| ChAD-1-S | -10 (in 5CB) | 2 g |
| ChAD-2-R | 22 (in 1444) | 2 g |
| ChAD-2-S | -22 (in 1444) | 2 g |
| ChAD-3C-R | 30 (in 1444) | 100 mg |
| ChAD-3C-S | -30 (in 1444) | 100 mg |
| AA-Bn11-R | 30 (in 1444) | 100 mg |
| AA-Bn11-S | -30 (in 1444) | 100 mg |
| It-12-R | 30 (in 1444) | 100 mg |
| It-12-S | -30 (in 1444) | 100 mg |

Note 1: Data on Helical Twisting Power (HTP) are approximate and are obtained with the material kept in dark for 24 hours.
Note 2: The letters $R$ and S in the name of the material refer to right-hand and left-handed materials, respectively.
Note 3: The materials starting with AA in the name are diacrylates.

Beam Engineering for Advanced Measurements Co.
809 S. Orlando Ave., Suite I, Winter Park, FL 32789, USA Tel. 407-629-1282 Fax 407-629-0460 e-mail: sales@beamco.com

## Materials

## AZOBENZENE MONOMERS



ACRYLATES

| Name | Cr 84 N 115 Iso |
| :---: | :---: | :---: | :---: |
| Cr 97 N 98 Iso |  |

## DIACRYLATES

| A6ZA6 | Cr 102 Iso |  |
| :---: | :---: | :---: |
| Al1ZA11 | $\begin{aligned} & \text { Cr } 92 \text { N } 94 \text { Iso } \\ & \text { Iso } 92 \text { N } 75 \mathrm{Cr} \end{aligned}$ |  |

## Materials

## CHIRAL AZOBENZENE MONOMERS

## DIACRYLATES

Chiral
(Right-handed) (Left-handed)

## Reactive Mesogenes (non Azobenzene)

1,4-Bis-[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene


Cr 86 N 118 Iso

1,4-Bis-[4-(3-acryloyloxypropyloxy)benzoyloxy]-2-methylbenzene


Cr 70 N 126 Iso

| Material | Min. order <br> [g] |
| :---: | :---: |
| Azo-monomers: acrylates | 2 |
| Azo-monomers: diacrylates | 2 |
| Azo-monomers: chiral diacrylates | 0.1 |
| Reactive mesogenes (non-azo) | 5 |

## Materials

## Photoalignment Materials



Liquid crystal polymer polarization grating, spiral phase plates and polarization converters produced with the aid of photoalignment technique.

BEAM Co.'s photoalignment materials are based on azobenzene. Using different molecular structures allows us to offer materials optimized for different radiation wavelengths. The alignment axis is perpendicular to polarization and is reversible when used with liquid crystals. The materials were tested to provide high resolution patterns required for polarization gratings and spiral phase waveplates.

The technology involves spin coating and solvent evaporation that can be performed even at room temperature.

| SPECI FICATI ONS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Item code | $\Lambda_{\text {max }}$ <br> [nm] | $\lambda=\mathbf{4 5 8} \mathbf{~ n m}$ | $\lambda=\mathbf{3 2 5} \mathbf{~ n m}$ | $\lambda=\mathbf{3 6 5} \mathbf{~ n m}$ |  |
| PAAD-22 | 367 | 0.6 | 0.3 | 0.5 |  |
| PAAD-23 | 403 | 4.5 | 7.2 | 9 |  |
| PAAD-26 | 429 | 3 | 12.6 | 14.4 |  |
| PAAD-27 | 393 | 0.3 | 2.7 | 1.1 |  |
| PAAD-29 | 404 | 3 | 12.6 | No |  |

$E$ - exposure energy, $\lambda_{\max }$ - peak absorption wavelength, $\lambda$ - exposure wavelength

## The materials are shipped in a solution ready for spin coating. Minimum order: 2g. Price: Custom quotation.

# FAST AZOBENZENE LIQUID CRYSTALS WITH ENHANCED VISIBLE PHOTOSENSITIVITY 



New azobenzene LCs have enhanced photosensitivity for visible wavelengths and can be used for optical switching of nanosecond pulses as well as cw laser beams.

| Material Name | $\begin{gathered} \mathbf{T}_{\mathrm{c}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$ | $\begin{gathered} \lambda_{\mathrm{m}} \\ {[\mathrm{~nm}]} \end{gathered}$ | $\begin{gathered} \alpha \\ {\left[\mathrm{cm}^{-1}\right]} \end{gathered}$ | $\begin{gathered} \tau_{\mathbf{r}} \\ {[\mathbf{s}]} \end{gathered}$ | Minimum order [g] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BPND-2(5\%)/1205 | 58 | 445 (cis) | 2100 | $\sim 10^{5}$ | 2 |
| BPND-2(10\%)/5CB | 30.5 | 471 | 5880 | 0.1 | 2 |
| CPND-2(7.5\%)/1205 | 60 | 442 (cis) | 2330 | $\sim 10^{5}$ | 2 |
| CPND-5(10\%)/5CB | 38.5 | 471 | 5360 | $\sim 1$ | 2 |
| CPND-7(10\%)/5CB | 39 | 471 | 5650 | 0.9 | 2 |
| NT7CBZ(3\%)/5CB | 39 | 574 | 4790 | 0.002 | 2 |
| NB7CBZ(5\%)/5CB | 43 | 537 | 6540 | 0.003 | 2 |
| CPND-K(5\%)/5CB | 36 | 473 | 3050 | $\sim 1$ | 2 |
| CPND-W(10\%)/5CB | 34.5 | 481 | 6070 | $\sim 1$ | 2 |
| Eut57(15\%)/5CB | 41.5 | 471 | 7370 | $\sim 1$ | 2 |

$T_{c}$ : clearing temperature; $\lambda_{m}$ : wavelength of maximal absorption; $\alpha$ absorption coefficient at 532 nm wavelength; $\tau$ : cisisomer lifetime

Beam Engineering for Advanced Measurements Co.
809 S. Orlando Ave., Suite I, Winter Park, FL 32789, USA
Tel. 407-629-1282 Fax 407-629-0460 e-mail: sales@beamco.com

## Materials

## SYNTHETIC INTERMEDIATES



Building blocks for organic synthesis, particularly for photoresponsive azo LC polymers.

## Micrograph of crystal DHAB

| Item\# | Chemical name | Formula | Minimum order [g] |
| :---: | :---: | :---: | :---: |
| CHAB | 4-Cyano-4'hydroxyazobenzene |  | 2 |
| DHAB | 4.4'-Dihydroxyazobenzene |  | 2 |
| 2-ADTHP | 2-Acetamidothiophene |  | 2 |
| NPNRC-n | N-Alkyl-N'- <br> phenylpiperazines, $n=3-8$ |  | 2 |
| NP4RC-n | N -Phenyl-4alkylpiperidines, $n=2-8$ |  | 2 |
| NP4RO-n | N -Phenyl-4- <br> alkoxypiperidines, $n=2-8$ |  | 2 |

Beam Engineering for Advanced Measurements Co.
809 S. Orlando Ave., Suite I, Winter Park, FL 32789, USA Tel. 407-629-1282 Fax 407-629-0460 e-mail: sales@beamco.com

## CRYSTAL $=$ SCAN

MODULAR, RECONFIGURABLE, FAST, PRECISE



CSX-400


CSX-500

## Laser Beam and Optics Characterization System

## CRYSTALSCAN FUNCTIONS

Crystal-Scan is an interactive modular system for laser beam and optics characterization easily reconfigurable for high-precision and fast measurements of several parameters of laser beams, focusing optics and other optical components that are substantial for most laser applications.
The base models allow:

- high precision determination of focus position
- measuring diameter of focused laser beams
- measuring peak power density of the beam
- characterization of quality of lenses and objectives

Crystal-Scan is the only commercially available device with the range of focal waist measurements from less than $1 \mu \mathrm{~m}$ and up to $100 \mu \mathrm{~m}$ diameter. It can be set up within minutes, and performs the measurement within seconds.
Optional accessories extend the capabilities of the system to measuring:

- laser beam divergence
- quality factor
- diameter of unfocused laser beams (mircoscanning configuration), and
- power of unfocused laser beams (mircoscanning configuration).

Measurements of power and beam diameter in Microscanning configuration, are performed on-line, without introducing any appreciable distortion into the beam.
The educational model CSX-300 (educational model) allows simplified insertion and removal of lenses without affecting the alignment of the overall system. In a single laboratory hour, students will be able to verify all main laws governing laser beam propagation, and the effect of aberrations.

## A reliable and an affordable measuring tool for everyday needs of optics professionals and laser users...

## Laser Beam and Optics Characterization System

## CRYSTAL - SCAN Optical Multimeter Specifications

| Device feature/ Model | CSX-400 | CSX-500 | CSX-300 |
| :---: | :---: | :---: | :---: |
| Waist measurement range | $2 \mu \mathrm{~m}-200 \mu \mathrm{~m}$ | $0.5 \mu \mathrm{~m}-100 \mu \mathrm{~m}$ | $3 \mu \mathrm{~m}-150 \mu \mathrm{~m}$ |
| Unfocused beam width measurements range | $100 \mu \mathrm{~m}-5 \mathrm{~mm}$ | $100 \mu \mathrm{~m}-3 \mathrm{~mm}$ | $100 \mu \mathrm{~m}-5 \mathrm{~mm}$ |
| Laser power range | $1 \mathrm{~mW}-10 \mathrm{~W}$ | $1 \mathrm{~mW}-10 \mathrm{~W}$ | $1 \mathrm{~mW}-10 \mathrm{~W}$ |
| Damage threshold | $1 \mathrm{~kW} / \mathrm{cm}^{2}-1 \mathrm{MW} / \mathrm{cm}^{2}$ | $1 \mathrm{~kW} / \mathrm{cm}^{2}-1 \mathrm{MW} / \mathrm{cm}^{2}$ | $\begin{gathered} 1 \mathrm{~kW} / \mathrm{cm}^{2}-1 \\ \mathrm{MW} / \mathrm{cm}^{2} \end{gathered}$ |
| Power density range | $10 \mathrm{~W} / \mathrm{cm}^{2}-1 \mathrm{MW} / \mathrm{cm}^{2}$ | $10 \mathrm{~W} / \mathrm{cm}^{2}-1 \mathrm{MW} / \mathrm{cm}^{2}$ | $\begin{array}{r} 10 \mathrm{~W} / \mathrm{cm}^{2}-1 \\ \mathrm{MW} / \mathrm{cm}^{2} \end{array}$ |
| Wavelength range | $0.4 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ | $0.4 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ | $0.4 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ |
| Aperture of sensor head | 12.5 mm or 25.4 mm | $0.4 " \times 0.4 "$ | 12.5 mm or 25.4 mm |
| Measurement time | 30 s | 20 s | 30 s |
| Absolute standard error | < 4 \% | < 4 \% | < 4 \% |
| Weight | 546 g | 412 g | 574 g |
| Dimensions | $3.25{ }^{\prime \prime} \times 8^{\prime \prime} \times 1.5^{\prime \prime}$ | $1.5^{\prime \prime} \times 2^{\prime \prime} \times 6^{\prime \prime}$ | 3.25 " $\times 9.5^{\prime \prime} \times 1.5^{\prime \prime}$ |
| Power supply | 110 V/220 V | $110 \mathrm{~V} / 220 \mathrm{~V}$ | $110 \mathrm{~V} / 220 \mathrm{~V}$ |
| Data acquisition and display | Desktop or Notebook | Desktop or Notebook | Desktop or Notebook |
| Lead Time | 6 weeks | 6 weeks | 3 weeks |
| Noninear Optical Element |  |  |  |
|  | LC-VL1 | LC-VL2 | LC-IL |
| Wavelength range | $0.4 \mu \mathrm{~m}-0.7 \mu \mathrm{~m}$ | $0.4 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ | $0.9 \mu \mathrm{~m}-1.3 \mu \mathrm{~m}$ |
| Power range | $1 \mathrm{~mW}-100 \mathrm{~mW}$ | $100 \mathrm{~mW}-10 \mathrm{~W}$ | $1 \mathrm{~mW}-100 \mathrm{~mW}$ |
| Maximum power density | $1 \mathrm{~kW} / \mathrm{cm}^{2}$ | $1 \mathrm{MW} / \mathrm{cm}^{2}$ | $1 \mathrm{~kW} / \mathrm{cm}^{2}$ |
| Clear aperture sizes available | $12.5 \mathrm{~mm}, 25.4 \mathrm{~mm}, 10 \mathrm{~mm} \times 10 \mathrm{~mm}$ |  |  |
| Photodetector* |  |  |  |
|  | PDA-55 | PDA-155 | PDA-400 |
| Wavelength range | $0.4 \mu \mathrm{~m}-1.1 \mu \mathrm{~m}$ | $0.2 \mu \mathrm{~m}-1.1 \mu \mathrm{~m}$ | $0.7 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ |
| * Thorlab parts |  |  |  |

## MICROSCANINING BEAM PROFILER



The Microscanning Beam Profiler has been developed for measuring the diameter of laser beams on-line, without introducing any appreciable distortion into the beam. Unique features of the device include its applicability to measuring arbitrarily high power and large area cw laser beams
Microscanning Beam Profiler can be mounted and stay directly in the beam path during operation of the laser. For laser beams with essentially non-Gaussian profile, Microline will output the beam diameter defined as the size of localization of $86.5 \%$ of the total laser beam power. Once calibrated, it also will provide the total power of the beam.

| Device feature/ Model | CSX-600HP |
| :---: | :---: | :---: |
| Waist measurement range | $20 \mu \mathrm{~m}-100 \mu \mathrm{~m}$ |
| Unfocused beam width <br> measurements range | $1 \mathrm{~mm}-50 \mathrm{~mm}$ |
| Laser power range | $5 \mathrm{~W}-100 \mathrm{~W}$ |
| Damage threshold | $10 \mathrm{MW} / \mathrm{cm}^{2}$ |
| Power density range | $>1 \mathrm{~kW} / \mathrm{cm}^{2}$ |
| Wavelength range | $0.4 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ |
| Measurement time | 20 s |
| Time between measurements | 1 s |
| Absolute standard error | $<5 \%$ |
| Weight | 2 kg |
| Dimensions | $30 \mathrm{~cm} \times 6.5 \mathrm{~cm} \times 10.5 \mathrm{~cm}$ |
| Power supply | $110 \mathrm{~V} / 220 \mathrm{~V}$ |
| Data acquisition and display | Desktop or Notebook |
| Lead time | $6-8 \mathrm{weeks}$ |

Beam Engineering for Advanced Measurements Co.
809 S. Orlando Ave., Suite I, Winter Park, FL 32789, USA
Tel. 407-629-1282 Fax 407-629-0460 e-mail: sales@beamco.com

## Laser Beam and Optics Characterization System

## EXPRESS COLLLMATOR (X-COLLMMATOR)



The X-Collimator has been developed for testing collimation of laser beams and quick alignment of optical systems to get the best collimation.

The device outputs a strongly diverging beam with typical pattern consisting of a number of concentric rings. Both the divergence and the number of rings are maximum when the best collimation is obtained. Simply observing for the changes in the divergence of the beam at the output of the device while aligning lenses allows achieving the best collimation of a system of lenses within seconds.

The X-Collimator also allows visual monitoring and evaluation of divergence, quality and peak power density of laser beams.

| Device feature | Feature value | Note |
| :---: | :---: | :---: |
| Average power | $1 \mathrm{~mW}-1 \mathrm{~W}$ | Specify range, cw or quasi-cw |
| Wavelengths | $0.4 \mu \mathrm{~m}-1.5 \mu \mathrm{~m}$ | Requires IR viewer for IR operation |
| Precision | $10^{-3}-10^{-5} \mathrm{rad}$ | Varies with beam quality, wavelength, <br> and required power range |
| Weight | $100-300 \mathrm{~g}$ | Varies for different models |
| Length | 2 (" -4 " | May vary for different models |
| Power supply | $2-3$ weeks |  |
| Lead time |  |  |

Beam Engineering for Advanced Measurements Co.
809 S. Orlando Ave., Suite I, Winter Park, FL 32789, USA
Tel. 407-629-1282 Fax 407-629-0460 e-mail: sales@beamco.com

# Laser Beam and Optics Characterization System 

## EXPRESS COLLIMATOR MODELS



Model XC


Model XCA

This is the base model. Coarse adjustments are possible, but it is not practical to perform them on-line.

Z-translating lens mount allows on-line fine adjustment of the distance between the lens and the nonlinear optical sensor element. X-Y translating mount allows using different areas of the nonlinear optical sensor material. The price of the translators is added to the price of the base model shown below.


Model XCU

Long range Z-translating lens mount allows calibration of the device for a wide range of wavelengths and laser beam sizes. Rotation stage mounted radiation sensor head allows optimizing the signal for polarized beams.

## Laser Beam and Optics Characterization System

## LAS-AIR HIGH POWER BEAM SAMPLING SYSTEM



LAS-AIR makes possible sampling of high energy/power laser beams through generation of an ultrasound grating in air or in other gaseous propagation medium of the laser beam. Its unique features include:

- no upper limit to the power of the lasers beam for profiling
- no distortions introduced into the beam

E electrically controlled attenuation of the sampled beam to any desired level

| SPECI FICATI ONS |  |  |
| :---: | :---: | :---: |
| Device feature | Feature value | Note |
| Sampling ratio | $10^{-3}-10^{-4}$ |  |
| Wavelengths | $0.5 \mu \mathrm{~m}-10.6 \mu \mathrm{~m}$ |  |
| Laser power | > 10 mW | at visible wavelengths |
| Damage threshold | Not applicable |  |
| Beam size | < 2 " |  |
| Weight | 200 g | Sampling element only |
| Size | $1^{\prime \prime} \times 2$ ' | Sampling element only |
| Price | Custom quotation | Includes sampling element and its controller, CCD and profiling software optional. |
| Lead time | 8 - 10 weeks | Varies depending on the laser system |

## Photonics Components and Systems

## BROADBAND INFRARED VISUALIZATION AND ALIGNMENT WINDOWS



The area of the window subject to infrared laser beam (particularly, $\mathrm{CO}_{2}$ laser beam) becomes translucent, and the beam propagates through it. The clearly visible translucent spot allows to perform conveniently all the alignment tasks as well as to judge about the power and energy distribution of the beam. Broadband IR viewers are available for laser beam power operation range extending from 100 mW to 3 W . The response time is around 50 ms being a function of the laser beam power. These IR viewing films are inexpensive and can be manufactured in different sizes.

| Device feature | Feature value |  |
| :---: | :---: | :---: |
| Peak power density | $1-10 \mathrm{~W} / \mathrm{cm}^{2}$ | Depends on the wavelength of the laser beam |
| Minimum power | $>5 \mathrm{~mW}$ | Depends on the wavelength of the laser beam |
| Damage threshold | $>10 \mathrm{~W} / \mathrm{cm}^{2}$ | Depends on required sensitivity |
| Resolution | $>10$ lines $/ \mathrm{mm}$ |  |
| Wavelengths | Near-to-far IR |  |
| Aperture | $1^{\prime \prime}$ |  |
| Response time | $<1 \mathrm{~s}$ | Other sizes and shapes available |
| Lead time | $6-8$ weeks |  |

## Photonics Components and Systems

## ECLIPSOR FOR SENSOR PROTECTION



The Eclipsor is used for sunlight mitigation in situations when the Sun is jamming the observation of the scenery around it. The Eclipsor protects the sensor (eye, CCD) from being blinded while maintaining overall transmission.

| Device feature | Feature value | Note |
| :---: | :---: | :---: |
| Degree of attenuation | $100-5000$ |  |
| Response time | $50 \mathrm{~ms}-1 \mathrm{~s}$ |  |
| Relaxation time | $100 \mathrm{~ms}-10 \mathrm{~s}$ |  |
| Sensitivity | $1 \mu \mathrm{~W}-10 \mathrm{~mW}$ | Varies depending on nonlinear optical |
| material |  |  |

## Photonics Components and Systems

## ACHROMATIC POLARIZATION ROTATORS



These optical components are made to rotate polarization of a laser beam by a fixed angle according to your specification. The rotation angle does not depend on wavelength of radiation.

| Model | PR-VIS | PR-MI R | PR-FIR |
| :---: | :---: | :---: | :---: |
| Rotation angle | 0-90 ${ }^{\circ}$ | 0-90 ${ }^{\circ}$ | 0-90 |
| Wavelengths | $0.4 \mu \mathrm{~m}-1.8 \mu \mathrm{~m}$ | 3.4-6.1 $\mu \mathrm{m}$ | $\mu \mathrm{m}$ |
| Transmission | 92\% without AR coating |  |  |
| Substrate material | BK7 | $\mathrm{CaF}_{2}$ | ZnSe |
| Aperture | 1" standard. Other sizes available |  |  |
| Lead time |  | 2-4 weeks |  |

## Photonics Components and Systems

## POLYMER FILMS FOR OPTICAL INFORMATION RECORDING, UV VISUALIZATION AND DOSIMETRY



## Call for custom specifications

