Beamco logo
HOMEAbout UsPRODUCTSPhoSM 2023
Models
Express collimator article
Express collimator working principles explained
Express collimator picture
The X-Collimator has been developed for testing collimation of laser beams and quick alignment of optical systems to get the best collimation.
The device outputs a strongly diverging beam with typical pattern consisting of
a number of concentric rings.
Both the divergence and the number of rings are maximum when the best collimation is obtained.
Simply observing for the changes in the divergence of the beam at the output of the
device while aligning lenses allows achieving
the best collimation of a system of lenses within seconds.
The X-Collimator also allows visual monitoring and evaluation of divergence, quality and
peak power density of laser beams.
Device feature Feature value Note
Average power 1 mW – 1 W Specify range, cw or quasi-cw
Wavelengths 0.4 mm – 1.5 mm Requires IR viewer for IR operation
Precision 10-3 – 10-5 rad Varies with beam quality, wavelength,
and required power range
Weight 100 - 300 g Varies for different models
Length 2” – 4” May vary for different models
N.V. Tabiryan, V. Jonnalagadda, M. Mora, S. R. Nersisyan, Laser beam and optics characterization with “z-scan” method, Proc. SPIE 4932, 656-666 (2003).


Model XC
Express collimator Model XC
This is the base model. Coarse adjustments are possible, but it is not practical to perform them on-line.
Model XCA
Express collimator Model XCA
Z-translating lens mount allows on-line fine adjustment of the distance between the lens and the nonlinear optical sensor element. X-Y translating mount allows using different areas of the nonlinear optical sensor material. The price of the translators is added to the price of the base model shown below.
Model XCU

Long range Z-translating lens mount allows calibration of the device for a wide range of wavelengths and laser beam sizes. Rotation stage mounted radiation sensor head allows optimizing the signal for polarized beams.

References

  1. U. Hrozhyk, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, G. Kedziora, B. Kimball, “High optical nonlinearity of azobenzene liquid crystals for short laser pulses”, Liquid Crystals XII, ed. by I.-C. Khoo, Proc. of SPIE, 7050, 705007 1-11 (2008).
  2. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals”, Adv. Func. Mat. 17, 1735-1742 (2007).
  3. L. De Sio, A. Veltri, C. Umeton, S. Serak, N. Tabiryan “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds”, Appl. Phys. Lett. 93, 181115 (1-3) (2008).
  4. S.V. Serak, N.V. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystal”, Proc. of SPIE, Liquid Crystals X, ed. I.-C. Khoo, 6332, 63320-Y1-Y13 (2006).
  5. U. Hrozhyk, S. Serak, N. Tabiryan, T.J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. & Liq. Cryst. 454, 235-245 (2006).
  6. S.V. Serak, N.V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technology Letters, 18 (12), 1287-1289 (2006).
  7. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals”, Opt. Lett., 31, 2248-2250 (2006).
  8. N. Tabiryan, U. Hrozhyk, S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93 (11), 113901-1- 113901-4 (2004).
  9. N.V. Tabiryan, S.V. Serak, V.A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” Journal of Optical Society of America JOSA B, 20 ( 3), 538-544 (2003)
BEAM Co.,
1300 Lee Road
,
Orlando
,
FL
,
32810
,
USA

Tel. (407) 734-5222
Fax (407) 969-0477
e-mail: sales@beamco.com, info@beamco.com.
http://www.beamco.com/